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Outline

• Fairness in networks 

• Rate control in communication networks 
(relatively well understood)

• Philosophy: optimization vs fairness

• Ramp metering (very preliminary)



Network structure
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- set of routes 
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Notation
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Ax ≤ C

- set of resources
- set of users, or routes 
- resource j  is on route  r
- flow rate on route  r
- utility to user  r
- capacity of resource j
- capacity constraints
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The system problem
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Maximize aggregate utility, 
subject to capacity constraints

SYSTEM(U,A,C):



The user problem
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User r  chooses 
an amount to pay per unit time, wr ,  

and receives in return a flow  xr =wr /λr

USERr(Ur;λr):
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As if  the network maximizes a 
logarithmic utility function, but 

with constants {wr}  chosen by the users

NETWORK(A,C;w):

The network problem



Problem decomposition

Theorem: the system problem 
may be solved

by solving simultaneously 
the network problem and 

the user problems
K 1997,
Johari, Tsitsiklis 2005, 
Yang, Hajek 2006



Max-min fairness
Rates  {xr} are  max-min fair  if they 

are feasible: 
CAxx ≤≥ ,0

and if, for any other feasible rates  {yr},

rssrr xxysxyr <<∃⇒>∃ ::
Rawls 1971, 
Bertsekas, Gallager 1987



Proportional fairness
Rates  {xr} are  proportionally fair  if 

they are feasible: 
CAxx ≤≥ ,0

and if, for any other feasible rates  {yr},  the 
aggregate of proportional changes is negative:
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Weighted proportional fairness

A feasible set of rates  {xr} are such that 
are weighted proportionally fair

if, for any other feasible rates  {yr},
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Fairness and the network problem

Theorem: a  set of rates  {xr} 
solves the network problem,

NETWORK(A,C;w),
if and only if the rates  are 

weighted proportionally fair 



Bargaining problem (Nash, 1950)

Solution to NETWORK(A,C;w) with
w = 1 is unique point satisfying  

• Pareto efficiency
• Symmetry
• Independence of Irrelevant Alternatives

(General w corresponds to a model         
with unequal bargaining power)



Market clearing equilibrium 
(Gale, 1960)

Find prices  p and an allocation  x such 
that
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,0 (feasibility)
(complementary 
slackness)
(endowments spent)

Solution solves NETWORK(A,C;w)
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x
n - number of flows on route r

- rate of each flow on route  r
Given the vector 
how are the rates  
chosen ?
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Optimization formulation
of rate control

Various forms of fairness, can be cast in 
an optimization framework.  We’ll 
illustrate, for the rate control problem.



Optimization formulation
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)(npj - shadow price (Lagrange multiplier) for the 
resource j capacity constraint 

Solution
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- maximum flow  
- proportionally fair
- TCP fair 
- max-min fair)1(
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Examples of    -fair allocations  α
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Example
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Source: CAIDA,
Young Hyun

http://mappa.mundi.net/maps/maps_020/index.html#walrus


Source: CAIDA -
Young Hyun,
Bradley Huffaker
(displayed at MOMA)



Flow level model

Define a Markov process
with transition rates
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- Poisson arrivals, exponentially distributed file sizes     

Roberts and Massoulié 1998  



If JjCA jr
r
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Stability

De Veciana, Lee & Konstantopoulos 1999;  
Bonald & Massoulié 2001

then the Markov chain
is positive recurrent
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Heavy traffic: balanced fluid model

The following are equivalent:
• n is an invariant state 
• there exists a non-negative vector p with 
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Thus the set of invariant states forms a  J 
dimensional subspace, parameterized by  p. 

1,1
Henceforth

== wα



Example

Rrr ∈= ,1μ
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Each bounding face corresponds 
to a resource not working at full 
capacity
Entrainment: congestion at some 
resources may prevent other 
resources from working at their 
full capacity. 1W

2W

02 =p

01 =p



Stationary distribution?

1W

2W

02 =p

01 =p

1p

2p

Williams (1987) determined sufficient conditions, in 
terms of the reflection angles and covariance matrix, for 
a SRBM in a polyhedral domain to have a product form 
invariant distribution – a skew symmetry condition 



Product form under 
proportional fairness

Rrwr ∈== ,1,1α
Under the stationary distribution for the reflected 
Brownian motion, the (scaled) components of  p
are independent and exponentially distributed.
The corresponding approximation for  n is

where 
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Dual random variables are independent and exponential

Kang, K, Lee and 
Williams 2009  



Multipath routing
Suppose a source-destination pair has access to 
several routes across the network:  

resource

routesource

destination

sr
S

∈
- set of source-destination pairs
- route  r serves s-d pair  s



Example of multipath routing

1C

2C

3C

3C
1n

2n 3n
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First cut constraint
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212211 CCxnxn +≤+

Cut defines a single pooled resource



Second cut constraint
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Cut defines a second pooled resource



Product form
Rrwr ∈== ,1,1α

In heavy traffic, and subject to some technical conditions, 
the (scaled) components of  the shadow prices p for the 
pooled resources are independent and exponentially 
distributed. The corresponding approximation for  n is

where 
SsApn

j
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Dual random variables are independent and exponential
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Kang, K, Lee and Williams 2009  



Outline

• Fairness in networks 

• Rate control in communication networks 
(relatively well understood)

• Philosophy: optimization vs fairness

• Ramp metering (very preliminary)



What we've learned about highway congestion
P. Varaiya,  Access 27, Fall 2005, 2-9. 

http://paleale.eecs.berkeley.edu/~varaiya/papers_ps.dir/accessF05v2.pdf


Data, modelling and 
inference in road traffic 
networks
R.J. Gibbens and Y. Saatci
Phil. Trans. R. Soc. A366 
(2008), 1907-1919. 

http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract


A linear network
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Metering policy
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Optimal policy?

For each of   i  = I, I-1, …… 1  in turn choose
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Proportionally fair metering
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jp - shadow price (Lagrange multiplier) for the 
resource j capacity constraint 
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Brownian network model

Then                                              is a J-dimensional 
Brownian motion starting from the origin 

with drift  

and variance  
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Brownian network model
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Brownian network model
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If                          then there is a unique 
stationary distribution  W under which the 
components of 

are independent, and           is exponentially 
distributed with parameter
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Delays

Let                                          

- the time it would take to process the work in 
queue  i at the current metered rate.  Then 
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A tree network



A tree network

541 QQQ ++



Route choices



Route choices
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Route choices
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Route choices
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Final remarks

• Often the networks we design are part of a 
larger system, where agents are optimizing 
their own actions

• Sharing resources fairly may, in certain 
circumstances, lead to near optimal 
behaviour of the larger system, if it exposes 
agents to appropriate shadow prices

• The proportional fairness criterion can give 
the appropriate shadow prices 
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