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Outline

e Fairness in networks

e Rate control In communication networks
(relatively well understood)

* Philosophy: optimization vs fairness

e Ramp metering (very preliminary)
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Network structure

set of resources

set of routes

If resource ] Isonroute r
otherwise
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Notation

J - set of resources

R - set of users, or routes
Jer  -resource | Isonroute r
X, - flow rate on route r
U.(x) - utility to user r

C, - capacity of resource |

Ax<C - capacity constraints route

g resource



The system problem

SYSTEM(U,AC):  Maximize » U, (x,)

rerR

subjectto Ax<C
over X=>0

Maximize aggregate utility,
subject to capacity constraints



The user problem

A
over w. >0

- W
USER/(U;4):  Maximize Ur( rj W,

r

User r chooses
an amount to pay per unit time, w,,
and receives In return a flow x. =w /A,



The network problem

NETWORK(A,C;w): Maximize » w, log x,

reR

subjectto Ax<C
over x>0

As If the network maximizes a
logarithmic utility function, but
with constants {w, } chosen by the users



Problem decomposition

Theorem: the system problem
may be solved
by solving simultaneously
the network problem and
the user problems

K 1997,
Joharl, Tsitsiklis 2005,
Yang, Hajek 2006




Max-min fairness

Rates {x.} are max-min fair if they
are feasible:

x>0, Ax<C
and If, for any other feasible rates {y, },

r:y >Xx = =

S:Y, <X <X

Rawls 1971,
Bertsekas, Gallager 1987




Proportional fairness

Rates {x } are proportionally fair if
they are feasible:

X>0, Ax<C

and If, for any other feasible rates {y,}, the
aggregate of proportional changes Is negative:

Zyr — X

reR




Weighted proportional fairness

A feasible set of rates {x.} are such that
are weighted proportionally fair
If, for any other feasible rates {y,},

dw, yr—x < 0

reR




Fairness and the network problem

Theorem: a set of rates {x. }

solves the network problem,
NETWORK(A,C;w),
If and only If the rates are
welghted proportionally fair



Bargaining problem (Nash, 1950)

Solution to NETWORK(A,C;w) with
w = 1 IS unique point satisfying
 Pareto efficiency
e Symmetry

 Independence of Irrelevant Alternatives

(General w corresponds to a model
with unequal bargaining power)



Market clearing equilibrium
(Gale, 1960)

Find prices p and an allocation x such
that

>0, Ax<C (feasibility)

T~ B (complementary
P (C-AX)=0 slackness)

W, = sz p,, reR (endowments spent)

jer

Solution solves NETWORK(A,C;w)



Optimization formulation
of rate control

Various forms of fairness, can be cast in
an optimization framework. We’ll
Illustrate, for the rate control problem.

n. - number of flows on route r
x. - rate of each flow on route r

Given the vector n=(n,reR)

how are the rates  x=(x_,reR)
chosen ?



Optimization formulation

Suppose x=x(n) ischosen to

—a

maximize ZW
—
S

subject to ZA" n, C, jel

X, 20 reR

(weighted -fair allocations, Mo and Walrand 2000)

1-a
O<a <o (replace fr by log(x.) 1If a¢=1)




Solution

/ \1/0{
w

r ZAjr pj(n)
\ | J

reR

where YA nx< C, jel; x>0 reR

conditions
pj(n)(cj _ZAjr n, er >0 Je

p;(n) - shadow price (Lagrange multiplier) for the
resource | capacity constraint



Examples of a-fair allocations

l1-a

maximize ZW n X
rr
1_a / \1/0{
- W
SUbjeCttO ZAJF nrXr— C JE‘] X, = A r reR
Z jr pj(n)
X, 20 reR \ J

maximum flow
proportionally fair

TCP fair
max-min fair

a—>0 (w=1)

a—1 (w=1)
a=2 (w =1/T°)
a—>o (w=1)



n=1 w =1reR,
Example C -1jel

1/2 1/2
max-min fairness:
o, —> O 1/
proportlonal fairness: + *

maximum flow:
a—>0



Source:.CAIDA



http://mappa.mundi.net/maps/maps_020/index.html#walrus

gorflit
Vs W,

Source: CAIDA -
Young Hyun,
Bradley Huffaker
(displayed at MOMA)



Flow level model

Define a Markov process n(t) =(n.(t), r eR)
with transition rates

nn—>n+1 atrate v reR

r

n ->n-1 atratt n x Ny reR

- Poisson arrivals, exponentially distributed file sizes

Roberts and Massoulié 1998




Stability

1%
Let o, =— TeR

Hy
If ZAerOr < C; Jel

then the Markov chain ~ n(t) =(n (t), r € R)
IS positive recurrent

De Veciana, Lee & Konstantopoulos 1999;
Bonald & Massoulieé 2001




Heavy traffic: balanced fluid model

Henceforth

The following are equivalent: g=1w=1

N IS an invariant state
e there exists a non-negative vector p with

n, :ﬁZAjrpj reR
He i

Thus the set of invariant states forms a J
dimensional subspace, parameterized by p.



ITI
X
Q
=

=1
D

ili
L

S

I

-

Mm

0
0000

slope

P17+ O
Each bounding face correspon
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Entrainment: congestion at some
resources may prevent other
resources from working at their
full capacity. W1




Stationary distribution?

Williams (1987) determined sufficient conditions, in
terms of the reflection angles and covariance matrix, for
a SRBM in a polyhedral domain to have a product form
Invariant distribution — a skew symmetry condition



Product form under [kang, K, Lee and

proportional fairness Williams 2009

a=1w =1 reR

Under the stationary distribution for the reflected
Brownian motion, the (scaled) components of p
are independent and exponentially distributed.
The corresponding approximation for n is

nrzprZAjrpj FER
where J

Pj ~ Exp(Cj _ZAjrpr) e

Dual random variables are independent and exponential




Multipath routing

Suppose a source-destination pair has access to
several routes across the network:

source

route

resource

destination

S - set of source-destination pairs
res - route r servess-d pair s



Example of multipath routing

Routes, as well as flow rates,

are chosen to optimize

Zns log(x,) over source-destination pairs s
S



First cut constraint

nx, +n,x, <C, +C,

Cut defines a single pooled resource



Second cut constraint

1
5 nX +NyX, <C,

Cut defines a second pooled resource



Product form

a=1w =1 reR

In heavy traffic, and subject to some technical conditions,
the (scaled) components of the shadow prices p for the
pooled resources are independent and exponentially
distributed. The corresponding approximation for n is

nszpsz ijjs SES

0 _
p, ~Exp(Ci—> Aisp,) je

where

Dual random variables are independent and exponential

‘ Kang, K, Lee and Williams 2009
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What we've learned about highway congestion

P. Varaiya, Access 27, Fall 2005, 2-9.

FIGURE 1

Speed vs. flow on 1-10
westhaund in 5 minute
intervals from 4:00 am
to &:00 pm


http://paleale.eecs.berkeley.edu/~varaiya/papers_ps.dir/accessF05v2.pdf
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Data, modelling and

inference in road traffic

networks

R.J. Gibbens and Y. Saatci
Phil. Trans. R. Soc. A366
(2008), 1907-1919.


http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract
http://rsta.royalsocietypublishing.org/content/366/1872/1907.abstract

A linear network

Tz

m (t) = m. (0) +& () - I;Ai (m(s))ds, t>0

/ |

queue cumulative metering
size Inflow rate




Metering policy

Suppose the metering rates can be chosen to be
any vector A =A(m) satisfying

ZAjiAiS C,, jel

A>0 1el

A;=0, m =0
and such that

m,(t) =m, (0) +&, (1)~ [ A(m(s))ds >0, >0



Optimal policy?
Foreachof 1 =1,1-1, ...... 1 In turn choose

j:Ai (m(s))ds > 0

to be maximal, subject to the constraints.

This policy minimizes
2. mi(t)

for all times t



Proportionally fair metering
Suppose A(m)=(A,(m),iel) ischosento

maximize > m; log A,

subject to ZAji A< Gy, Jeld

A >0, 1€l
Aizol m|:O



Proportionally fair metering

m

D PiA;

J

Ai (m) —

where A 20, 1€l
YA NS C, o jel

conditions
pj(cj -Y A Ai]zo, jeld

P; - shadow price (Lagrange multiplier) for the
resource | capacity constraint




Brownian network model

Suppose that (g (t),t >0) isa Brownian
motion, starting from the origin, with drift p.
and variance p.c’. Let

X;®)=2 Ayet)-Cit

Then  X(t)=(X;(t),JeJ) isaJ-dimensional
Brownian motion starting from the origin
with drift —-0=Ap-C

and variance T =g’A[p]A’



Brownian network model

et W = A[p]A'Ri
and W' ={Ap]A: geR], q,=0}

Define W (t) by the following relationships::

i) W({t)=X({)+U(t) forall t>0

(i1) W has continuous paths,W (t) e W

(1) foreach je J,U, isaone-dimensional processsuch that

(@) U; Iscontinuousand non -decreasing, with U (0) =0,

(b) U, (t) = j; {W (s) € W'3dU (s) forall t>0.



Brownian network model

If gj >0, jeJ, thenthere isaunique
stationary distribution W under which the
components of

Q=(Alp]A)"W

are independent, and Q, is exponentially
distributed witzh parameter

9 9.
2 J
and queue sizes are given by

M =[p]AQ

jed



Delays

Let D.(m) = A.n(1;n)

- the time 1t would take to process the work In
queue 1 at the current metered rate. Then

Di(M): ZQjAji

Q+Q, +Q; QrQ 2

Triz




A tree network
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A tree network
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Route choices
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Route choices
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Route choices
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Route choices
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Final remarks

e Often the networks we design are part of a
larger system, where agents are optimizing
their own actions

 Sharing resources fairly may, In certain
circumstances, lead to near optimal
behaviour of the larger system, if it exposes
agents to appropriate shadow prices

* The proportional fairness criterion can give
the appropriate shadow prices
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